Comox Valley Project Watershed Blue Carbon Pilot Project

Courtenay, Canada

Project watershed

Organization type: nonprofit/ngo/citizen sector

Project Stage: Start-Up

Budget: $100,000 - $250,000

Website: http://projectwatershed.ca

- Biodiversity
- Climate change
- Conservation
- Environment
- Pollution
- Wildlife conservation

Project Summary

Elevator Pitch

Concise Summary: Help us pitch this solution! Provide an explanation within 3-4 short sentences.

The Comox Valley has a population of around 65,000 in 3 main communities, the City of Courtenay, Town of Comox and Village of Cumberland. To combat escalating use of fossil fuels, governments, such as the provincial government of BC, have established carbon offset costs. All jurisdictions have signed on to the climate action charter and therefore need to pay carbon offsets starting in 2012. Communities have developed strategies to deal with these offset costs, mainly by reducing the use of non-renewable energy. Another strategy is carbon offset programs to trade conservation of energy with use. We can also eliminate carbon dioxide (CO2) in the atmosphere through Living Carbon storage. Living Carbon is more commonly thought of as the long-term storage of carbon in the tissues of trees and plants in forests (green carbon). Blue carbon is a form of Living Carbon that occurs in aquatic environments where aquatic plants such as eelgrass and sedges act to store carbon in the soils and sediments below the plants or in the deep ocean sediments. We propose to establish blue carbon offsets for eelgrass restoration in the Courtenay River Estuary. This would allow offset funds to remain local rather than going to outside companies. Our solution has a win/win outcome, habitat restoration means more wildlife, and in estuaries means a direct impact on mitigating climate change.

About Project

Problem: What problem is this project trying to address?

The Comox Valley has a population of around 65,000 in 3 main communities, the City of Courtenay, Town of Comox and Village of Cumberland. To combat escalating use of fossil fuels, governments, such as the provincial government of BC, have established carbon offset costs. All jurisdictions have signed onto the climate action charter and therefore need to pay carbon offsets starting in 2012. Communities have developed strategies to deal with these offset costs, mainly by reducing the use of non-renewable energy. Another strategy is carbon offset programs to trade conservation of energy with use. We propose to establish blue carbon offsets for eelgrass restoration in the Courtenay River Estuary. This would allow offset funds to remain local rather than going to outside companies. When the Chair of Project Watershed presented the idea to the Board of the Regional District, composed of members of all four local jurisdictions, they voted unanimously to support this initiative and contacted the Association of Vancouver Island and Coastal Communities who did the same. Both groups then wrote to the Province to ask for support for our project. Our work over the last three years has generated local and political support for restoration efforts in the Estuary so all we need now is seed funding. We have recently met with people from the Climate Action Secretariat/MOE and they are supportive of our project.

Solution: What is the proposed solution? Please be specific!

A major question facing residents of communities like the Comox Valley on Vancouver Island, was how we can reduce our dependence on fossil fuels. One approach is to establish strategies of conservation or use of renewable energy (solar, wind, etc.). Another is to eliminate
carbon dioxide (CO2) in the atmosphere through Living Carbon storage. This is more commonly thought of as the long-term storage of carbon in the tissues of trees and plants in forests. Blue carbon is a form of Living Carbon that occurs in aquatic environments where aquatic plants such as eelgrass and sedges store carbon in the soils and sediments below the plants or in the deep ocean sediments. Our solution has a win/win outcome, habitat restoration means more wildlife, and in estuaries means a direct impact on mitigating climate change.

Impact: How does it Work

**Example: Walk us through a specific example(s) of how this solution makes a difference; include its primary activities.**

In April of 2012, a landmark study was released by Restore America’s Estuaries (RAE) which for the first time linked ecologically important coastal habitat restoration with adaptation and mitigation strategies as a way to reduce the impacts of ongoing global climate change. Eelgrass meadows lie in the intertidal areas of estuaries. The scientific literature shows that this marine flowering plant sequesters carbon much better by several magnitudes of anything on land. The K’omoks estuary had been dredged and logs boomed at several locations from the earliest part of the last century until the beginning of the new century. All of the damaging industry has gone and there now is a community will to protect, preserve and restore. Older residents have provided information on historical areas for eelgrass and the younger generation will facilitate the planting and restoration. This collaboration of all in our community will facilitate bringing back British Columbia’s second most important estuary towards its former level of abundance and directly contribute to climate action. Our pilot project will provide the evidence necessary to help establish carbon offset parameters for coastal estuaries which can then be used by all coastal communities.

Sustainability

**Marketplace: Who else is addressing the problem outlined here? How does the proposed project differ from these approaches?**

When trying to establish the criteria for determining a living carbon offset, one has to know how much carbon dioxide is removed from the atmosphere by the vegetation systems providing the offset. For many systems, the calculations are established and the markets are set. The unique geographical characteristics within estuaries along the Strait of Georgia provide one of the most productive areas in the world for primary photosynthetic activity and carbon dioxide removal. A protocol does not exist for the evaluation of blue carbon offsets. In our Pilot Project, we will identify parameters required to establish an industry protocol, propose methods to quantify those parameters and provide the results to offset the through the Verified Carbon Standards (VCS) and offset industries for review.

Source URL: https://www.changemakers.com/node306408/entries/comox-valley-project-watershed-blue-carbon-pilot